3.865 \(\int \frac {1}{x^4 (a+b x^4)^{3/2}} \, dx\)

Optimal. Leaf size=131 \[ -\frac {5 b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{12 a^{9/4} \sqrt {a+b x^4}}-\frac {5 \sqrt {a+b x^4}}{6 a^2 x^3}+\frac {1}{2 a x^3 \sqrt {a+b x^4}} \]

[Out]

1/2/a/x^3/(b*x^4+a)^(1/2)-5/6*(b*x^4+a)^(1/2)/a^2/x^3-5/12*b^(3/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/
cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))
*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(9/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {290, 325, 220} \[ -\frac {5 b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{12 a^{9/4} \sqrt {a+b x^4}}-\frac {5 \sqrt {a+b x^4}}{6 a^2 x^3}+\frac {1}{2 a x^3 \sqrt {a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + b*x^4)^(3/2)),x]

[Out]

1/(2*a*x^3*Sqrt[a + b*x^4]) - (5*Sqrt[a + b*x^4])/(6*a^2*x^3) - (5*b^(3/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b
*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(12*a^(9/4)*Sqrt[a + b*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \left (a+b x^4\right )^{3/2}} \, dx &=\frac {1}{2 a x^3 \sqrt {a+b x^4}}+\frac {5 \int \frac {1}{x^4 \sqrt {a+b x^4}} \, dx}{2 a}\\ &=\frac {1}{2 a x^3 \sqrt {a+b x^4}}-\frac {5 \sqrt {a+b x^4}}{6 a^2 x^3}-\frac {(5 b) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{6 a^2}\\ &=\frac {1}{2 a x^3 \sqrt {a+b x^4}}-\frac {5 \sqrt {a+b x^4}}{6 a^2 x^3}-\frac {5 b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{12 a^{9/4} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 54, normalized size = 0.41 \[ -\frac {\sqrt {\frac {b x^4}{a}+1} \, _2F_1\left (-\frac {3}{4},\frac {3}{2};\frac {1}{4};-\frac {b x^4}{a}\right )}{3 a x^3 \sqrt {a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + b*x^4)^(3/2)),x]

[Out]

-1/3*(Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-3/4, 3/2, 1/4, -((b*x^4)/a)])/(a*x^3*Sqrt[a + b*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.89, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{4} + a}}{b^{2} x^{12} + 2 \, a b x^{8} + a^{2} x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)/(b^2*x^12 + 2*a*b*x^8 + a^2*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {3}{2}} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(3/2)*x^4), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 113, normalized size = 0.86 \[ -\frac {b x}{2 \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}\, a^{2}}-\frac {5 \sqrt {-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}+1}\, b \EllipticF \left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, x , i\right )}{6 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, a^{2}}-\frac {\sqrt {b \,x^{4}+a}}{3 a^{2} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(b*x^4+a)^(3/2),x)

[Out]

-1/3*(b*x^4+a)^(1/2)/a^2/x^3-1/2*b/a^2*x/((x^4+a/b)*b)^(1/2)-5/6/a^2*b/(I/a^(1/2)*b^(1/2))^(1/2)*(-I/a^(1/2)*b
^(1/2)*x^2+1)^(1/2)*(I/a^(1/2)*b^(1/2)*x^2+1)^(1/2)/(b*x^4+a)^(1/2)*EllipticF((I/a^(1/2)*b^(1/2))^(1/2)*x,I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {3}{2}} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(3/2)*x^4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^4\,{\left (b\,x^4+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b*x^4)^(3/2)),x)

[Out]

int(1/(x^4*(a + b*x^4)^(3/2)), x)

________________________________________________________________________________________

sympy [C]  time = 1.91, size = 41, normalized size = 0.31 \[ \frac {\Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, \frac {3}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} x^{3} \Gamma \left (\frac {1}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(b*x**4+a)**(3/2),x)

[Out]

gamma(-3/4)*hyper((-3/4, 3/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*x**3*gamma(1/4))

________________________________________________________________________________________